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Abstract. We review some algebraic methods to solve systems of polynomial equations
and illustrate these methods with a real-world problem that comes from computing kine-
matic transforms in robotics.
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81. Introduction

Polynomial systems of equations and the structure of their solutions play a crucial role in
many fields of theoretical and applied mathematics. The importance of polynomial equations
in applications is often due to the need to determine locations of points from given euclidian
distances which obviously leads to quadratic equations.

The mathematical formulation is as follows: Suppose we are given a finité' set
K[z] = K[z1,...,z,] of polynomials in the: variablesr, . . . , z,, with coefficients in the
field K, where usualhK = Q, R, C, i.e., the rational, real or complex numbers. Given the
equationsF, the goal is to find the solution¥ c K of the systemF(X) = 0 in the
algebraic closur& of K, that is,

X:{meK":f(x):O,feF}. 1)

Note that there are two major differences to the “standard approach” for solving nonlinear
equations by means of Newton’s method: The number of equatibAsneed not coincide
with the number of variables;,, and we are not interested in a single solution, but in the set
of all solutions ofF'(X) = 0.

The equationg’(X) = 0, f € F, trivially remain valid if each of them is multiplied by
an arbitrary polynomiad; € K[z] and if any such modified equations are added. Hence,

F(X)=0 & (M)=0, (F)={Xaf: qekkl}, @

fer

where(F') is theideal generated by'; recall that an ided is a subset oK[z] which is closed
under addition and multiplication by arbitrary polynomials, cf. [4]. A sultsetf an idealZ
is called abasisfor the idealZ if G generates the ideal, i.€,= (G). With this terminology
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at hand, we can rephrase (2) as that the solitiatepends only on the ided| but not on the
individual basisF'. This simple observation is the fundamental idea behind all the algebraic
methods to solve polynomial systems by interpreting the original equations as a basis of an
ideal and then computing another basis for the same ideal from which the solution of the
polynomial system is more easily accessible. In other words: Algebraic methods transform a
given system of equations into a simpler or more useful form.

82. Grobner bases, H-bases and eigenvalues

Grobner bases as well as H-bases are special ideal bases which provide representations of
minimal degree, where these two types of bases differ by being related to different notions
of degree. For Grobner bases, we need the concepterirmorder” <” on Ng, that is, a
well-ordering onlNj; which is compatible with addition, cf. [4]. With respect to this order,

any polynomial

f@) =Y far®,  fa€K,  #{o: fo#0}<o0,

a€eNy

has a maximal nonzero coefficiefif and« is called the(multi)degreeof the polynomial
while f, z is usually named thé&ading termof f. For H-bases, on the other hand, the
degree is not a multiindex, but a number, namely the maximal lengts oy + - - - 4+ v, Of

the indices of nonzero coefficients — the usteahl degree Nevertheless, we will write the
degree of a polynomiaf asé(f), regardless of whethex(f) € Nj or é(f) € No; indeed,
there is a joint framework in terms of graded rings, see [5], and [10] for the application in
ideal bases and interpolation. A finite g6t C K]z] is calledGrobner basisor H-basis
depending on whetheris based on on a term order or on the total degree, if fary (H)

can be written as

F=3 fuh,  fu€Klal, () =8(fuh),  heH. 3)

heH

The crucial point of Grébner bases and H-bases is the degree constraint in (3) which helps to
avoid a certain redundancy: Assume that one term in the sum on the right hand side were of
higher degree thaf, then there must be at least a second term of the same or higher degree
compensating its leading term, and the representation would be redundant, all the terms of
degree higher than that gfunneeded. But the main practical advantage of Grobner bases
and the main reason for their development in [2] is the fact that they permatigloeithmic
computatiorof a unique remainder,

F=> fuh+r. 4)

heH

This can be extended to the grading by total degree [6, 9] and even to arbitrary gradings in
such a way that the remainderdepends only o) and the parameters of the grading,
see [11] for details. Thus, we have a method to compute a normal#fggnmodulo (/)

and to efficiently perform arithmetic in the quotient rify:= K[z]|/ (H). Moreover,P is a
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finite dimensional space if and only if the idé€al= (H) has dimension zero which is in turn
equivalent to a finite number of solutioASfor H(X) = 0.

So here is the first part of the algebraic simplification: Starting with a finiteFset
polynomial equations, one computes a Grébner basis or H-bBasis the ideal(F’) from
which it can be decided whethéf(X) = 0 has no solution (this happens if and only if
1 € H), a finite number of solutions or infinitely many solutions. It is even possible, see [4],
to determine the dimension of the algebraic variety formed by the solutions. But in this paper
let us assume that were nonempty and finite.

The classical method [13], see also [1, 4], to fikids by means o€limination ideals A
purely lexicographical Grobner basis for a zero dimensional ideal contains some univariate
polynomials whose greatest common divisor vanishes at the projections of the common zeros
to this coordinate. Solving and substituting the solutions eliminates the variable and con-
tinuing this process, one can systematically find all the common zeros. Unfortunately, this
process has a terrible complexity and can be very sensitive to perturbations of the coefficients,
cf. [7], which limits its use in practical applications.

There is, however, a different approach proposed by Mdller and Stetter [8, 12] which is
based omultiplication tableson the quotient spacE. To that end, observe that multiplica-
tion of f, g € P is defined a%z (f g) and that for fixedy € K[z] the operation

f'_’Mg(f) =vr(fyg)

is alinear operatoron P that can be represented with respect to a basiB bl a matrix

M, — the so callednultiplication table Forj = 1,...,n let now M; denote the multipli-

cation table for the coordinate polynomiaig:) = x;, then theM; generalize the classical
Frobenius companion matrix, form a commuting family of matrices, have joint eigenvectors
and the respective eigenvalues are the coordinates of the common zeros. Thus, the solutions
of F(X) = 0 can be found by relying on well-developed methods from Numerical Linear
Algebra and the flexibility of H-bases now offers an approach that changes continuously with
the parameters and thus is much less sensitive to perturbations, see again [7] for an example.

83. Practical Examples

In this section we want to apply and illustrate the mathematical concepts of the preceding
chapters. To that end, we take a look at two slightly different kinematics. First, we will
consider a simple example in three dimensions to show how we obtain the equations needed
as starting ideal basis for the computation of a Gréber basis or H-basis. Then we present
a kinematic that still appears to be quite simple but leads monstrous Grébner bases and H—
bases and also point out how crucial it is to incorporate “implicit” physical restrictions into
the system of equations.

All our kinematics follow the same basic layout: Theanipulator(in most cases used
for melding or milling) is connected to three (or more) rods of variable length. Imtlezse
kinematic transformve know the position of the manipulator and want to compute the “ma-
chine parameters”, i.e., the lengths of the rods, while irféiard kinematic transfornthe
location of the manipulator is to be determined from the lengths of the rods. In both cases the
ideal basis which we first must construct is the same, namely the implicit system of equations.
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Figure 1: Simple 3D kinematic.

The only difference consists of the choice which of the parameters are considered variables
to be solved.

3.1. A Simple 3D-Kinematic

The first example is really easy to solve and we only use it to demonstrate how to obtain
the equations from which we compute the Groébner- or H-Basis. First we take a look at the
construction. In figure 1 the construction is fixed in three poii{sA, and A3, coplanar
with the origin{0}, and have the same distancé {0}. Furthermore, the distance between
every two points is constant. Now it is easy to see how to obtain the equations we need.
Consider the projectio of T' = (z,y, z) in the plane generated b¥;, A, and A3. With
Pythagoras we have

Li=vy>+ A —S||%,i=1,2,3,

which directly leads to the set of equations

v+t (a-2)? =18 = 0,

2 2
3 -1
y2 4 <§az> + <2a Z) 7Z§ = O7
2 2
3 -1
y2+<\2[a—x> +<2a—z) ~12 = 0.

In Maple notation, the ideal is thus generated By:= [22 + y? + (a — 2)? — I2,9% +
(‘?a —z)?+ (Sta—2)? - B,y* + (?a — )+ (Fa—2)" - 13,
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Because we used the (square of the) lengthis andis explicitly in our ideal basis we
can give the solution of the inverse kinematic transform directly as

L = V2 +a2+(a—2)?,

2
V3 ~1 2
ly = y2+<—2a—x +(2a—z>,
2 2
3 -1
l3 = y2—|—<\2[a—a:> +<2CI/—Z) .

For the forward transform we switch the roles of variables and constants which are now
declared as, y, z anda, b, I, l2, I3, respectively. Without further problems we compute an
H-basis off’ asH = [9a%y? — 313a% + 15 — 1213 + 13 + 9a* — 1312 — 3a®13 — 3212 + 1 —
1312,6az — 12 + 212 — 12,12az + 2V/312 — 21/313] and by means of multiplication tables of

P and the corresponding eigenvectors we find that

V3(3 — 13)
6a ’
V=15 + 3302 — 13 + 1212 + 3212 — 9a* + 1313 + 3a213 — 1T + 312

y = 34 )

25 +13+1
6a '

Note that the equations farandz are significantly simpler than the one far

Sincey appears quadratically in the H-basis, it follows that together itly, 2) also
(z, —y, 2) is a solution of the system. However, this second solution is impossible in physical
reality because the rods are flexible but fixed and cannot cross themselves. Unfortunately, it
appears impossible to eliminate this unwanted “solution” a priori by adding more equations
to the system; in fact, the only way to distinguish between the two solutions is by means of
inequalities.
Remarkl. It is worthwhile to mention that not for all values of, > andl; the solution
belongs to the real domain as in some cases the solution gains an additional imaginary part
because the three rods have no common point. Though physically impossible this is abso-
lutely correct mathematically. Finding additional constraints that eliminate complex solutions
would consist of determining the associatedl ideal

A =

3.2. The realistic problem

Now we want to take a close look at a slightly extended version of the latter three dimensional
kinematic used in practical applications. In figure 2 the upper part of the construction equals
the one in figure 1 while the lower part differs with the manipulator being attached centrally
under a platform which is held and moved by the rods. To make things simpler, we assume
that the verticesB;, B, and B3 of the platform form an equilateral triangle with distarice
between the points and baryceniee= (z,y, z). To stabilize the construction, the platform
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Figure 2: Complex 3D kinematic.

is also linked to the origig0} by an additionally guiding rod which is attached perpendicular
inT.

We will not discuss the ideal basis construction in full detail but should mention a few
facts. First, it is not possible to compute the valuelodlirectly, but it is easily found as
midpoint of the triangle formed by3;, B>, Bs once these locations are determined. The
lengthsly, [; andiz are just as easy to obtain as before from the equations

IS = Aill3 + IS = Bills = 1B: — Aill3,  i=1,2,3,

in which S is the projection off’, leading to

i+ (m—a)l+y; = 1,
2
3 2
<x2+f2a> +(zz+g) +y3 = I

2
3a a\?
l’g-L +(23—|—7> +yz = 2
2 2
As mentioned previously the triangle is equilateral giving us the additional three equations

(i — 25)% + (i — y;)° + (20 — 2;)° = b2, 1<i<j<3.

The orthogonality of the system can finally be described by the inner pro@@iet;, T") =
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0,7=1,...,3,which leads to

(r—z)r+Y—y)y+(z—21)z = 0,
(r—22)r+(y—12)y+(z—22)z = 0,
(x—z3)z+ (y—y3)y+(z2—23)2 =

Finally we need the fact that the midpoifitof the triangle can be written as sum of the outer
pointsT" = £1£8248s yielding three more equations

(1 + 22 + x3) = 32, (y1 +y2 +y3) = 3y, (21 + 22 + 23) = 3z.

Together, these twelve equations forms our initial ideal bBsis- [27 + (21 — a)? + y§ —
2 2

2, (1‘2 + @) F(+9) 212, ($3 - ‘/23“) + (23 +9) 12— 12, (21 —m0)2 +

(y1—y2)+ (21— 22)* =%, (21— 23)* +(y1 —y3)* + (21— 23)> =7, (x2 —23) +(y2—y3)* +

(20— 23)2 =%, (x—21)x+ (y—y1)y+ (2 —21)z, (x —22)2+ (y —92)y + (2 — 22) 2, (x —

z3)z+(y—ys)y+ (2 —23)2, (v1 + 22+ 23) — 3, (Y1 +y2 +y3) — 3y, (21 + 22+ 23) — 32].

This time we begin with the more interesting forward kinematic transformation and are
only interested in the dimension of the variety of the solutiét{X) = 0. To do so, we
substitute some numerical values for the constants, I3, a andb and compute a Grébner
basis which can be done without many problems but with a little bit of tintd€g ordered
basis has no less than 56 elements). Computing the dimension, we surprisingly realize that
the ideal is one—dimensional and not zero—dimensional as it should be if we wanted a finite
number of solutions and to apply multiplication tables for their computation.

So the first question is why we found a one—dimensional variety. For convenience, we
substitute (as beforda = v/3,b = 3,1; = 4 | i = 1,2,3} (see figure 3), and the desired
final solution for the platform is

T T
T
T= (07430)T7 Bl - (0747 \/g) ) B2 = <_374a_\/§> ) B3 = (374a_\/§>

2 2 2 2

If we rotate the lower triangle counterclockwise around the origin, sa3had belowAs, B,
below A, and B3 below A; (see figure 4), we find that the poifit = (0,1/7,0)” resulting
from

/ 3 \/3 ! / 3 \/g ’ / g
Blz<—2,ﬁ,—2> 732:<2"ﬁ’_2> ’BBZ<O’W"/§> ‘

is another solution of our polynomial system.

Consequently, we obtain, by simple rotation, a one—parameter family of solutions and
that is precisely the reason why our ideal is not zero—dimensional, so that we have add more
equations to the ideal basis in order to prevent rotations. In such situations, it is a good idea
to give a closer look to reality and indeed it turns out that such torsions of the robot are
impossible since the guiding rod is connected to the upper partumyarsal jointthat can
only move forwards/backwards and left/right but does not permit rotational movement.
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Figure 3: Simple Substitution.

Figure 4: Simple Rotated Substitution.
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Again, we will not discuss the modeling of the joint in detail, but here is the basic idea
behind our approach: If we know the cenfér= (x, y, z) of the triangle, the position of the
outer pointsBy, Bs, Bs is fixed. So take a look at the poist:= (0, —+/z2 + y2 + 22,0)
which is just the position of” if the kinematic is not moved to any sid&dst position”).

We can calculate the angte betweenS andT', more precisely the term, = cosa. Let

the pointsBj, B), B be the vertices of the lower triangle in this rest position. With the
help of rotation matrices and the anglewe can then compute the solution for the points
By, Bs, B3 explicitly. Doing so addsleverfurther equations to our former ideal basis which

2
makes us end up Wit := [27 + (21 — a)? +y% — I3, (332 + @) + (22 + %)2 + 3 —

2
13, (353 - @) + (23 + %)2 +y3 — 13, (21 —22)2 + (11 —v2)* + (21 — 22)> = b2, (1 —
23)° 4 (y1 — y3)? + (21— 23)% — 0%, (w2 — 23)% + (Y2 — y3)° + (22 — 23)> = V?, (x — 1)z +
W—y)y+(z—21)z (@ —z)r+ (y —y2)y+ (2 — 22)z, (x —x3)x + (y —y3)y + (2 —
23)2, (21 4+ 9 + 23) — 32, (Y1 + y2 + y3) — 3y, (21 + 22 + 23) — 32],V3dl(z — x1) —
brz,\/3dl(y — yl) — byz,V/3l(z — z1) + bd, /3lby + 2v/3dl(x — 22) + bxz, —/3lbx +
2v/3dl(y—y2)+byz, 2\/§l(szZ)fbd flberQfdl(x x3)+bxz, flbx+2\fdl(yf
y3) + byz, 2v/3l(z — 23) — bd, v + y* — d?, 2® + y? + 2® — I?], whered = /22 + y2 and
I= /22 +y%+ 22

To solve the inverse kinematic problem, we choose the variables s, z1, 2, ¥2, 22,
3, Y3, 23, 1, d, l1, l2, [3 and the constants asy, z, a, b. The H-Basis can be easily computed
asH = [(y*+2?)z1 —2xz23 —2y? +22%0— 23, 21+ 223 — 32, (202 +2y?)y2 + 22y 23+ 2bd —
23 —2yx? —2y2?, 20— 23, (2:52+2y2)w3+2x223+ybd72221'72:Ey27213, (202 4+-2y?)ys+
2zyz3 — wbd — 2y — 2yx? — 222, (222 + 2y°) 2o + 22223 — ybd — 2222 — 223 — 22y?, Y% +
22)y1 —2zy23—ya® —y3+2yz2, (z —|—y2+x )d2 2y w22t 222 -yt 222 (622 +6y%+
622) 23d+ (0322 +bv/3y?) 1+ (—623 —62y% —6202)d, (1222 +12y> +1222) 23+ (—242y° —
24z2% — 2423) 23 + 122* + 121”22'2 — b22? — Y20 + 122242, 3bld + (6223 + 61322 +
6y2v/3) 23 —6v/32% —61/322% —6y%2V/3, 6231 — 621 +/3bd, 12 — 2% —y? — 22, 313 — 12023 —
322 —b? — 322 +18za— 3y — 3a?, 6y> +622)13 + (622+/3a — 6ax? — 6ay?) 23 — 3ayby/3d —
622a® — 6z22av/3 — 6y* — 623ay/3 — 6za\/3y? — 62* — 129222 — 20222 — 6a2y® — 2y%b% —
622y% — 62222, (6y% 4 622)12 4 (—6ay? —6ax> —622/30) 23 — 3ayby/3d — 2y*b> — 6ay? —
622y — 62* + 62303 — 6y* — 62202 — 12222 — 62222 — 20222 + 6x2°%aV/3 + Gma\/?jgﬂ].

The spaceéP has dimensiof2, so we will have32 solutions, but most notably our ideal
is zero-dimensional as desired. If we substitute some numerical values for the constants, we
see why there are so many solutions (from physics only one would be expected): Because of
squaring andd we can have both positive and negative solutions. Siaceld are physical
lengths they cannot be negative, however, but this cannot be fixed a priori. So if we select
the correct results at the end, we get= (—(—62%y? — %% — b22? + 62%a + 6zay? +
6zax? + 2la/3bd — 3a%y? — 3z%a? — b22% — 6x2z2 — 6y’z? — 3564 — 3y4 — 3a22% —
324)/(322 —i—3y2 + 31;2))1/2, ly = (—(—62"22 — 6y — 62a\/3y?2% — 623ax? — 6zaxt —
6z3ay —6zay —Gy —62% —6za/3y* — 620> 12x2 2y2 1295 a\fy 24y2 222 —
2022222 — 4b2x%y? — 6a2y? 2% — 220222 6x4a —12y*22 — 18y — 122422 — 1821y
202z 6a2y 462 122ax2y2 — 62°av/3 — 3ay>by/3d — 3ayb\/§d22 — 3ayb\/§dx2 —
62%a\/32% — 3lawzbd+lax2\/§bd+lay2\/§bd)/(622y2 +6y* +12y2 22 + 62222 +621))1/2,
I3 = (—(=62%z% — 6y%2* + 6waV/3y?2? — 62%ax® — 6zax* — 623ay® — 6zay* — 6y —
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62° + 6zav/3y* — 622a%2% — 1222a%y> + 122%a/3y? — 24122222 — 2022222 — 4b%ay? —
6a%y?2? — 2y%b%2% — 6x*a? — 12y%2% — 18y*2? — 122422 — 182%y? — 2b%2* — 6a’y* —
2y4b2 — 12zax2y2 + 62%av/3 — 3ay3b\/§d — 3ayb\/§dz2 — 3ayb\/§dx2 + 6230322 +
3laxzbd + lax®/3bd + lay?v/3bd) /(622y? + 6y* + 12y%x? + 62222 + 62*))'/2, where
d= /2?2 +y?andl = /22 + y? + 22.

For the forward transform, the variables atey., z1, €2, y2, 22, T3, y3, 23, L, Y, 21, d and
the constant$,, 2, 3. Because both Computer Algebra systems we uSedyular and
Maple , cannot even compute a Grobner basis for the ideal as it is given in this form, we
had to relocate the point$,, A, and A3 to the next integer grid value. Furthermore, we will
substitute{a = 2,b = 4,1; = 3 | i = 1,2,3} because the symbolic solution is still too
complex, thus changing the ideal ko= [27 +yf + (2 —21)2 =9, (-2 —x2)? +y5 + (=1 —
22)2 =9, (2—23)* +y3+(=1-23)? =9, (z—21)z+(y—y1)y+ (2 —21)z, (v —22)2+ (y -
Yo)y + (2 — 22)2, (z —w3)x + (Y —ya)y + (2 — 23) 2, (¥1 — 22)° + (y1 — y2)* + (21 — 22)° —
13, (z3 —22)2 + (y3 —y2)? + (23 — 22)? — 16, (1 —23)* + (y1 —y3)? + (21 — 23)% — 13, 21 +
Totx3—3x,y1+y2+ys—3y, 21 +22+23— 32, 2dl(x —x1) —4az, 2dl(y—y1) —4yz, 2l(z —
z1) + 4d, 8ly + 4dl(x — x2) + daz, —8lax + 4dl(y — y2) + 4yz,4l(z — 2z2) — 4d, —8ly +
4dl(x — x3) +4xz, 8Lz +4dl(y —y3) +dyz, 4l (2 — 23) —4d, 2? +y* — d?, 2? + ¢ + 22 — 1?].

A (tdeg—ordered) Grobner basis contains no less ttaelements and therefore cannot
be called very small. But at least we can figure out that theréGaselutions to the equations
and with the algorithm from [3, p. 134ff] we can compute the number of real solutions and
discover that there are only four of them, thus, up to symmetry, the desired solution and
probably one with crossed rods as before.

In summary one can say that presently the realistic problem is inaccessible, but its terrible
complexity originates from “contamination” by tf% complex solutions which correspond
to physically impossible configurations. This is one more major drawback of algebraic meth-
ods which can find the solutions only in the algebraic closure of the original field.
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